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Abstract

Thermodynamic influences on the behavior of acceleration
waves in a class of general Maxwellian non-conductors are
(.xamined. It is shown that every acceleration wave must be
homentropic but that, in general, the entropic amplitude and
the amplitude of the wave are not proportional as they would
be in the special case of a simple non-conductor with fading
memory; a necessary and sufficient condition for the propor-
tionality of the two types of amplitudes is given. The
Bernoulli equation which governs the growth behavior of the
wave is derived and simple solutions are obtained for waves
which propagate into a homogeneous rest region of the body.
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I.

Introduction

In his groundbreaking paper, Coleman [I] laid the foundations of a

comprehensive thermo-dynamical theory for simple materials with fading

memory; the theory established, was then used, by Coleman and Gurtin [2],

* to study the effects of thermodynamic influences on the growth behavior

*of acceleration waves propagating both in (simple) definite conductors

*of heat and in non-conductors. Coleman's initial work was followed by

papers by Gurtin [3] and Wang & Bowen [4] in which attempts were made,

respectively, to clarify the basic structure of Coleman's original

theory and to propose an alternative thermodynamical theory for non-

*h linear materials which retains, at least, some of the best features of

Coleman's theory while avoiding some of its most striking drawbacks. Finally,

in the last of a major series of papers on the propagation and growth

"" behavior of waves in materials with memory, Coleman, Greenberg, and Gurtin

S[5] put forth a concrete constitutive proposal for the mechanical response

of a Maxwellian material of class N (N Z 1, an integer) and proved that

every sufficiently smooth simple material with fading memory could be

*. con:0.dered a Maxwellian material of order N(N 2) relative to a well-defined

N-1
clas of C motions; the growth behavior of acceleration waves (and

*higher order waves) in Maxwellian bodies was examined and theresults were

then applied to study the growth behavior of waves propagating both in

smooth elastic materials and in sufficiently smooth simple materials with

fading memory.

In this paper we extend the previous work on Maxwellians materials

to take account of thermodynamic influences in the case where the material

ib a non-conductor of heat. After establishing certain kinematical ane
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thermodynamical preliminaries, we present our definition of a Maxwellian

6u n-Conductor of Class I in §1. In §3, thermodynamical restrictions on the

response of a Maxwellian Non-Conductor, which are implied by the Clausius-Duhem

inequality, are examined; in doing so we make one basic assumption on the

underlying class of processes, which occurs in the definition of the

material, and impose certain smoothness requirements on both the stress and

temperature fields. Extending a result of Coleman & Gurtin (2], for waves

in simple non-conductors with memory, it is shown that every such wave in a

general Maxwellian Nonconductor must be homentropic. The intrinsic velocity

of an acceleration wave, which is propagating in a Maxwellian Non-Conductor,

is then calculated. Finally, we derive a differential equation which governs

the growth behavior of acceleration waves propagating in Maxwellian Non-

Conductors; in order to do this we find it necessary to relate the

entropic amplitude, as defined by Coleman & Gurtin [2], to the amplitude of

the wave. We find that, in a general Maxwellian Non-Conductor of Class 1,

* the two amplitudes are not proportional and proportionality holds if and only

if asimple explicit relationship connects two of the constitutive coefficients

a,: the wave front.

The differential equation which governs the growth behavior of acceleration

waves in Maxwellian Non-Conductors of Class I is a Bernoulli equation whose

coeFficients are rather complicated functions involving not only the values of

the various constitutive quantities and their derivatives at the wave but also

the values of both the spatial and time derivatives of the deformation gradient

and entropy ahead of the wave. Several simplifications occur when we

consider acceleration waves which propagate into a homogeneous rest region of

th+ body. The solutions, of the governing differential equation, which are
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well-knownfrom previous work on the growth behavior of acceleration

waves in non-linear materials of various kinds, are recorded and

analyzed. In doing this, we make explicit the dependence of the

amplitude, of the wave, on the various thermodynamic entities which

occur in the theory; the previous results for acceleration waves

propagating in general Maxwellian materials of class 1, in the

purely mechanical theory, can not be deduced from ours .y simply

suppressing all of the thermodynamical variables.

Mechanical and Thermodynamical Preliminaries

All the kinematical and mechanical concepts used in this paper

are one dimensional. Let R denote a closed interval of the real

line; a motion of the body is described by a function x = X(X,t)

which gives the location x at time t of the material point which has

the position X in the reference configuration; the density in R

is denoted by PR' Not only the motion X, but also the stress T,

tvie absolute temperature 8, the specific internal energy per unit

misq E, the specific entropy T, the heat flux q, the specific

extrinsic body force b, and the specific extrinsic heat supply

r are all to be regarded as functions of X and t; we assume that

P R is constant over B.

When they exist, the derivatives k(X,t) 3 t X(X,t), x(X,t)



= x(X,t) and F(X,t) = X X(X,t) are called, respectively, the

velocity, acceleration, and deformation gradient. The laws of

balance of momentum and balance of energy take the forms

(. X RdX XRbI dX + T(Xat) - T(X ,t)
x8  x

dB

(1d. 1)( + )PRdX : fXa(xb + r)OPRdX + T(X 8 at)x(X t)(112 X8 X8

- T(Xxt)x(X ,t) - q(XBt) + q(Xa ,t)

and (1.11), (1.12) are assumed valid at all times t and for every

pair of points X ,X in R. An admissible thermdynamic process for

the body is a specification of the fields x, 0, T, n, E, q, b, r,

as functions of X and t, in such a way as to be compatible with

the balance laws (1. 1), (1.12) and whatever constitutive relations

are prescribed for the material. In the present work those con-

Ftitutive assumptions take the following forms: Let J be an open

subset of (0,-) and let E be the set of all functions from

JxJxRx(-w, t) into the real numbers. Then0

Definition 1.1 A material body is said to be a Maxwellian Non-

Conductor of class 1 if q:O and if there exists a non-empty class

M consisting of pairs (X,n), where X is a C motion on Rx(-,t o)

and n is a continuous entropy density function on Rx(--,t 0 ) such

that the following holds (1) T, e, and 4 exist whenever F and n
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do and (ii) corresponding to each E : (X,n) e M there exist

nine C1 functions A, B...., I E in E such that

(1.21) T(X,t) = A (F;n;X;t)F + B (F;n;X;t); + C (F;n;X;t)

(1.2 2 ) (X,t) = DE(F;n;X;t)F + E+(F;n;X;t); + F (F;n;X;t)

(1.23) 6(X,t) = GE(F;n;X;t)F + H (F;n;X;t)A + I (F;n;X;t)

Finally, we take as our expression for the second law of

thermodynamics, the Clausius-Duhem inequality,

(1 3) d ,X p d ,xa r dX + q (X s 't) q(X8 t)
(1.3) dP dX X + -(X- ,t) -a(lX,t)

which must hold at all times t and for every pair of points XX 8

in R. We will examine the consequences of requiring

that (1.3) hold for all smooth admissible therodynamic processes

in a Maxwellian Non-Conductor.

2. General Properties of Acceleration Waves

We collect here those facts about acceleration waves which

are pertinent to a study of the propagation and growth behavior

of such waves in Maxwellian Non-Conductors. The material re-

prpesentation of a wave is a smooth one-parameter family of points

Y(t)eR, --<t<t , where Y(t) gives the material point (labeled)

by its position in R) at which the wave is to be found at time

t. The material trajectory of the wave is given by
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.(2.1) T x't) Ix = Y(t), te(--D,to0

and we call the wave an acceleration wave if the fields x(X,t)

and n(X,t) have the following properties: x, x,F, and n are con-

tinuous functions of X ahd t jointly for all X and t, while i,

SxF , ;, aXn and also x , a f, a F, f a a 2 have (at most)

jump discontinuities across but are continuous in X and t jointly

everywhere else. If f(X,t) , as a function of X, has only a jump

discontinuity at X = Y(t) , then the jump in f(X,t) across I at

time t is defined by

(2.2) If] lim f(X,t) - lim f(X,t) = f(Y(t) ,t) - f(Y(t) +t

X)y(t) XY(t)+

whenever the intrinsic velocity, Ut  d Y(t), of the wave is positive,

f- = f(Y(t)-,t) and f+ = f(Y(t)+,t) represent the limiting values

of f(X,t) immediately behind and just in front of the wave. By a

well-known theorem of Maxwell we have the following compatability

conditions for acceleration waves:

(2.3) [[p = = U2[aXF]

(2.4) EIn] 1ut[ax]

Now let us assume that the extrinsic body force and the heat supply
are assigned in such a way that b(X,t), r(X,t), b(X,t), and xr(Xt)

are continuous functions of X and t. Then for processes involving
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acceleration waves, the laws of balance of momentum and energy

and (1.1 are together equivalent to the assertion that

for X $ Y(t)

(2.51) axT + pRb PRR

(2.52) PR = TF + pRr

while for X = Y(t)

(2.61) [axT] R[] (1 )

(2.62  OR[ ] = TF]

In both (2.5 2) and (2.6 2) we have set q = 0 in accordance with

our assumption that the material is a non-conductor.

3. Thermodynamical Restrictions on Maxwellian Non-Conductors

We discuss here restrictions, on the con-

stitutive equations of a Maxwellian Non-Conductor, which are implied

by the Clausius-Duhem inequality (1.3) when we make one ad-

ditional assumption on the class of processes M and impose certain

smoothness requirements on the stress and temperature fields.

- ) We are assuming that p is constant over R so that p

= P(X)Ix=y(t) = PR ; this assumption has the effect of eliminating

term involving d Pt ( )U in the equation which governs thedt R x t) u
t7'm growth behavior of the amplitude a(t) [x1(t), as will r;c pointed

- later.
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Definition 3.1 Let X be a point in R and (X,n) any process

in M. Denote by 6 and T respectively, the temperature and stress

fields, at any time t, at the particle X in the process 6. Then

the constitutive equations of a Maxwellian Non-Conductor are

said to be compatible with thermodynamics if the Clausius-Duhem

inequality, in the local form

(3.1) - - 8 ) + F-1F _> 0

is satisfied, whenever F and r exist and are continuous, i.e.,

at all (X,t) such that X Y(t).
ANow, let A and B be any two real numbers and let ts(- -,t).

if = (X,n) is a process in M we define a new process

(X ,T) by
M~t) ; < t < t

(3.21 X(Xt) A A A A(Xt) + (t - t)AX ; t < t . t + k
A

(3.2 2  nA(X ,t ) =^^(<(X,) + (t - t)B ; t - t t + k

where k > 0. We call Q an (A,B,t) continuation of C. Our ad-
ditional hypothesis for the class of process M then takes the follow-

ing form:

A('1) Let = (X,n) be a process in M. Then for any triple (A,B,t),

wh(-re A and B are real numbers and tc(-o,t), there exists a k > 0
A'iiuh that , the (A,B,t) continuation of 6, is also in M.
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Remark 3.1 For the deformation gradient F (X,t) we have, obviously

( AF(X't) ; =< t < t

(3.3) FA(X,t) A A A
F(X,t) + (t - t)A ; t < t 5 t + k

A
and the pair (F ,nA) then represents an (A,B,t) local linear con-

tinuation of (F,n)
(2 ).

A

Now, let 4 e M be an (A,B,t) continuation of E E M. Then we

make the following additional smoothness assumptions concerning

the response of the Maxwellian Non-Conductor under consideration.

(H2) If 8 and T, denote, respectively, the stress and temper-
A A

ature fields, at any time t c [t, t+k], at the particle X in the

process E then

(3.41) li (T (X,t)): T (X,t)

AA

(3.4 2) lim (0 (X,t))= e (X't)

(U3). If J, denotes either DN, EN, or F,, then when t e [t,t+kl,

A A A(.9.5) liW J (FA(X,t);nt(x;t);X;t) = J (F(X,t) ;n(X; t);X; t)

Now, as & c M, the constitutive equations (1.21) - (1.23

will be compatible with thermodynamics only if

(3.6) -p& + p5 n + 0

is satisfied at all points (X,t) where X Y(t). In particular, at

(:) Such continuations have been used by Gurtin [3] and by Wang &

Bowen ['14].

I
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AA
each t e [t,t+kl we must have

(3.7) (F. T (X,t) - PD )A + p(8 (X,t) - E )B - pF > 0

where we have made use of(3.2 2 ), (3.3), and (1.2I) -(1.23) with

= In (3.7) the argumentsof D,, E,,, and F, are FA(X,t),

AA

n(X,t), X, and t. Since (3.7) is valid for each t c [t,t+M if
A

We let t - t then, by virtue of (3.3) and the smoothness hypotheses

(HI), (H2), and (H3) if follows that

'A A A A A

(3.8) (F-l(Xt)TE(X,t) -D E(F(X,t);n(Xt);X;t))A

A A A A

+ P(8E(X,t) - E (F(X,t);n(Xt),X;t))B

A A A
- pFE(F(X;t);n(X,t);X;t) 0

However, as A and B were taken to be any arbitrary real numbers,

A
and t is any time in the interval (--,to ), it follows from (3.8)

that in any process E E M

CD 91 T (X,t) = pF(X,t)D E(F(X,t);n(X;t);X;t)

(3.92 ) 6(X,t) = EE(F(X;t);n(X;t);X;t)

(3.9 ) - oF (X;t);n(X,t);X;t) 2 0 - e F (F(X;t);n(X,t)zX;t)

at each (X,t) c R x (--,t o ) .

Remark 3.2 At each (X,t), where X 9 Y(t), (3.91 (3.92 ) impl

that

(3.102) T (Xt) {PF(BFD )IF(X,t) + {pF( D )};(X,t) + OFat D
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(3.1o 2  0 (Xt) { F { E E I X,t) + {% E }1(X,t) + atEE

These representations for T and e are, however, distinct from

those assumed in (1.2 1) and (1.2 ) as the terms pF3tD, t EE and

the various coefficients of F and r il the above equations are,

at most, continuous in the arguments F, n, X, and t.

4. Wave and Entropic Amplitudes

We now turn our attention to a study of the behavior of ac-

celeration waves in Maxwellian Non-Conductors of class 1. As a first

step in this direction we show that every such wave must be

homentropic, i.e., that it satisfies [ [a n] = 0. We assume that

the conditions (HI), (H2) and (H3) are satisfied so that the reprsent-

ations (3.9 ) and (3.9 ) are valid for each E E M. It then follows1 2

that for each E e M, T (X,t) is a continuous function of X for all

X e R. So, by (2.62) we have

(4.1) PR T(Y(t),t)[F]

However, if we take the jump of (1.2 2) we find that

(4.2) [ ( D ) [F] + (E ) [;1

where (D) t  D E (F(Y(t),t);n(Y(t),t);Y(t);t)

and (E&)t = E M(F(Y(t),t);n(Y(t),t);Y(t);t). Put, by (3.9 1) it is

clear that T (Y(t),t)/pR = DE(F(Y(t),t);n(Y(t),t);Y(t);t) as

P= p(Y(t))F(Y(t),t). Thus combining (4.1) with (4.2) (and making

use of (3.9 2)) yields

2 ied
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(4.3) e (Y(t),t)[n]: 0

If, as is customary, we assume that 0 > 0 in every process c M,

then (4.3) clearly implies that [n; = 0 and the result follows front

the kinematical condition of compatability

(4.4) [; = -U [axn].

By making use of the fact that every acceleration wave is necessarily

homentropic, we easily establish a formula for the intrinsic

velocity U t of such a wave; taking the jump of (1.21)

yields

(4.5) [T] = (A )t[F]

where (A )t = A (F(Y(t),t);n(Y(t),t);Y(t);t). However, as T is

continuous, Maxwell's theorem tells us that

(4.6) [T] = -Ut [; xT]

and if we combine this result with (2.61) and (2.3 ) we easily find

2
(4.7) [T] -UtPR[R] e Ut ]

Then, a comparison of (4.5) and (4.7) yields:

Theorem 4.1 The instrinsic velocity Ut of an acceleration wave

in a Maxwellian Non-Conductor of class 1 is given by

(4.8) U t  (

where (A,)t A,(F(Y(t),t);n(Y(t);t);Y(t);t)
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In order- to consider the growth behavior of acceleration waves in

Maxwellian Non-Conductors we now make use of the equation ([5)

da - a dUt 1 i a2F I ,2[aF
dt Ut dt PR L UtL:-. ]

whose derivation is based only on the conditions which define an

acceleration wave, our smoothness assumptions on the extrinsic

body force, and the law of balance of momentum.

Remark 4.1 We will use our constitutive equations to calculate

xa T 1C. As in Coleman, Greenberg, and Gurtin [5], we may

then replace [at a xT 1 by [ at T].

Now, at all points (X,t) (Y(t),t), we

differentiate (1.2 ) thru w.r.t X so as to obtain
1

(4.10) a a T A a F + B 9 + {(aFA )xF
X t X E x F E(~ )X

+ (a AE)axn + axA }F + { (aFB&)aXF + (anB)axn

+ axB }f + (aFC )aXF + (anC )axn + axC [

Taking the jump of (4.10) and making use of our smoothness assumptions

on A, B, and C, the fact that the wave is homentropic, and theorem

4.1, gives us

(4.11) [aXat'T - RU [a = (B) t[a X] + (a A )t[Fia xF]

+ {(aFA )t(axF)+ + ( A )t ( n)+ + (ax A E) tFi]

{(aFAtF + (aFBE)tn + (a F C)t[DXF],
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where the t subscripts on the quantities enclosed in parentheses

indicate that they are to be evaluated at the wave, i.e., at

(Y(t),t). Now, as the wave is homentropic it follows that

(4.12) 0 !d [ 3 = [* ] + Ut [a ;]

The quantity En] is called the antropic amplitude. If we set

(4.13) Vt  (3FA)t(axF)+ + ( A )t (a x n)+ + (ay )t

(4.14) t (aFA )F+ + (aFB )t6  + (a C )

then use of (4.13), (2.31), and (2.3 ) enables us to rewrite (4.12)

in the form

*2 4 -(B t (a FA)t 2(4.15) [a xatT - 1zU-[axF] : t 3i a (t)
,- Ut

+ Vt a(t)

In order to proceed further, we must relate the entropic amplitude

to the amplitude a(t) of the wave. To this end we differentiate

(2.5 2) thru w.r.t. X and find that

(4.16) piaX T F + FaxT& + PRaxr

T axF + PRP- - PRFb + pRaXr

where use has been made of (2.51); we remark that all the terms on

the right hand side of (4.16 1) exist and are continuous, at all points
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away from the wave, by.virtue of (3.91), our smoothness assumptions

on D and r, and the conditions which define an acceleration wave.

Thus, taking the jump of (4.162) yields,2
(4.17) [a X 1 - T (Y(t),t)[3 PF + CR]- b(Y(t))[F]

x PR t

On the other hand, if we differentiate our constitutive equation

(1.22) for e thru w.r.t. X we obtain

(4.18) axe = D axF + E + pm FD)3 xF + (a DE)axn + axD }

+ ;{(aF )aXF + (a) E)axn + aXD }

+ (aFFF)aXF + (aF)Xn + aXFE

Once again, all the quantities appearing on the right-hand side of

this equation exist and are continuous at all points away from the

wave and so taking the jump of (4.18) yields

(4.19) [aX] (D )t[axF] + (Et [aX ;] + (aFD )tJ][aXF1

+ {(aF D ) ( XF)+ + (9 D )t (a n)+ + (aX D ) F]

+ {(a FD)tP+ + (a FE)t;+ + (aFF)t } [3xF1

where, as before, the t subscripts indicate that the quantities in

the parentheses are to be evaluated at the wave. Now set

(4.201) Yt = (aFD )t(aXF) + (a D ) (a X) + + (aX D )

(4.202) 6 t = (a FD )t F + (aFE )t+ + (aFF )t

r
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I1

Since - T (Y(t),t) : (D ) and (E ) e (Y(t),t) a comparison of

(4.17) with (4.19) yields the result:

(4.21) 8E(Y(t),t)[aX ;(t) [1F] - (aFD )t [F]a[xF]

-(Yt + b(Y(t))[F] - 6t[ xF]

Since,

(4.22) [iF](t) a(t)F + + (3)+[F] + a(t)[F]

a(t){f + 
- (+/Ut} - 1/Ut a 2 (t)

if we make use of (2.3), we may rewrite (4.21) in the form

3 2(4.23) 6 (Y(t),t)[a;](t) {(D D )/U - I/U }a (t) + H a(t)
xF t t t t

where we have set

(4.24) Ht d E+ - ( t)+ + Yt/U t + b(Y(t))/Ut _ t-/U

Finally, (4.12) leads us to the following

Theorem 4.2 The entropic amplitude of an acceleration wave which

is propagating in a Maxwellian Non-Conductor of class 1 is related

to the amplitude a(t) of the wave by

(4.25) [i(t) eaYtt {1 - ( FD)/U)a 2(t) - Ht Utat)

Remark 4.2 As (4.25) shows, in a general Maxwellian Non-Conductor

of class 1 the entropic amplitude is not proportional to the ampli-

tude of the wave. In order for the two amplitudes to be proportional

it is necessary and sufficient that
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(4.26) (aFD U2 (At/P

Now, by (3.101), it is clear that a representation of the form

(4.27) (PR aFD)F + (PRB D) + PR~t D

exists for T, at all X 9 Y(t), but, as we have already pointed out,

this representation is, in general, distinct from the one given by

the constitutive assumption (1.21); a conclusion such as (4.26) is,

therefore, not possible in the general case. In a simple non-

conductor with fading memory, which is sufficiently smooth enough

to admit a representation as a Maxwellian Non-Conductor of class 1,

*. the condition expressed by (4.26) is fulfilled as is demonstrated

*in the appendix.

If we now substitute the expression for the entropic amplitude,

as given by (4.25), into (4.15) and make use of (3.92), we find that

(4.28) 1 [axatT - U2[3X = aa(t) + 8a2 (t)

where

(4.29) PRat (B ) H t/(E) t - /U 2 vt/U
~tt t t t

(4.30) oRa t IL- )(B)t(aFD)t - (E 0 A ) /(E )U3

- (B t) /(E ) Ut

Finally, so as to be able to employ (4.10), we calculate an

expression for dU t/dt. Differentiating (4.8) w.r.t. t yields the

following sequence of results:
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(431 P d Ut !d ( F(Y(t),t); n(Y~t);t);Y(t);t))

(4.31) 2 oRUt dt dt

Ml+{(FA)C(( F) dX + (a F))
.. X Y(t)

+ (a AlMaxn) + (a n)) + at) + (atA)}

(3 X dt t +(xOdX +

(a FAj)t {(axF)+ U t + (atF) + } + (a1A )t{(xl)+ u t + (a) + }

+ (3xAC)t Ut + (aA C )t

If we divide both sides of (4.313) thru by 2pRU2 and make use of

(4.2) we find that

t

(4.32) 1 d-t- (aFK {0 F )+ Ut + ( t F)+}

+ (3nK )t {0ax )+ ut + (a t) +} + (axK )t U t + (atK)t

(3) If PR is not constant over R there appears on the left hand

side of this equation the extra term (Yxp ) Ut/2P

R R
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def A1/2
where we have set K n Combining (4.10), (4.28), and

(4.32) we are led to the following result:

Theorem 4.3 The growth behavior of the amplitude of an acceleration

wave which is propagating with intrinsic velocity Ut in a Maxwellirn

Non-Conductor of Class 1 is governed by the differential equation

(4.33) 2 da(t) ta (t) + 0ta 2 (t )

def 1 dU t
where, at U dt + at, is determined by (4.32) and (4.29) and

t
at is defined by (4.30)

Equation (4.33) is, a differential equation of Bernoulli

type; in general, the coefficients at and 8t will be rather com-

plicated functions which involve, not only the values of various

constitutive quantities and their derivatives at the wave, but also

the values of both the spatial and time derivatives of the deform-

ation gradient and the entropy just ahead of the wave. Certain

simplifications occur, however, if we assume that the wave is pro-

pagating into a homogeneous rest region of the body, which we define

as follows: Let E = (X,n) be a process in M and let

{(X,t) I X = Y(t), --<t<t 0 denote an acceleration wave re-

lative to E which is propagating in the body with intrinsic velocity

Ut. Then the wave is said to be propagating into a homogeneous rest

region in the time interval [0, to) if i) for 0 ! t < to and X

F(X,t) = F0=const. and n(X,t) = noconst. (ii) AE, Bs,...,I are

all constant in X and t for 0 t < to and X 2 Y(t).
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Thus F+ (xF) +  + ( Xn) +  and, for 0 : t < t and X > Y(t),

A (F(X,t); n(X;t); X;t) = A (Fo T1o, X, t) A 0 . .

I(F(X,t);n(x,t);X;t) I (Fo ;n;X;t) =0 0

(iii) PR(X) = po = const., for X t Y(t) fin the case where PRis not

already assumed constant over all of R

i ~~~~2 _o - 2 =cot.0< <tan
It is then clear that Ut  Po o o

(4.34) V t = (=A) 8X(F°; no ; X;t) 0

(4.35) Pt = (aF C E) t lim a C (F ; n ; X;t) (aFCo const.

X+Y(t)

(4.36) Y = (axD ) lima xD(Fo; no;X;t) 0t x E t X Y(t)+

(4.37) 6 = (a F ) lim a FF(Fo; no;X;t) (3 FF) const.
F t Ft X-Y(t)4  "

(4.38) H t  b(Y(t))/U O - (3F ) /U2

However, by (2.51), (3.9 and our smoothness assumptions on b,

(4.39) PRb (Y(t)) = PR - (axT)+

= PR{R - (aFD t (axF) - (a3D) t ( X)
+

- xDEIt (tD 0,
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as all the terms on the right hand side of this equation vanish.

It then follows that

(4.40) Ht _(3F ) H const.
t F o o o

In view of (4.34) - (4.38) and (4.40), (4.29) and (4.30) now assur

the relatively simple forms

(4.41) a {B0H /E' - 0 C ) /U 2  a const.

(4.42) 1 {[B(3FD)o - E (AE)o]/EOU B /EU con.... 0 BE o =00=cn

Corollary: The growth behavior of the amplitude of an acceleration

wave which is propagating into a homogeneous rest region of a Max-

wellian Non-Conductor of class 1, in the time interval [0,t ), is
0

governed by the differential equation

(4.43) 2 da(t) a a(t) + 8a 2(t) ; 0 t < t
dt 0t 0 0 <.

where a and 8o are the constants given by (4.41) and (4.42).
i0

5. Acceleration Waves in Maxwellian Non-Conductors: Growth and

Decay Behavior

The solutions of the differential equations (4.33) and (4.43)

are well-known as these equations and various special cases of them
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have arisen frequently in studies on the growth behavior of ac-

celeration waves in non-linear materials of various kinds, i.e.

see [2] [51, or [6]; we record here the appropriate results

as they apply to acceleration waves in Maxwellian Non-Conductors

of class 1. Consider the differential equation (4.33) and assume

that Ut > a, 0 : t < t It is easily verified that, by virtue

of our smoothness assumptions on the constitutive quantities A ... I

and the conditions which define an acceleration wave, the coefficients

at and 5t are continuous functions of t for 0 < t < t If

a(0) def lim+ a(t) exists, then it is a consequence of the uniqueness
t-0

of solutions of (4.33) that a(t*) = 0 at some time t* c [0,t o) implies

that a(t)!0 for all t c [0,t ). So, assume that a(t) 1 0, 0 t < to •

We can then state

Theorem 5.1 The amplitude aft) of an acceleration wave which is

propagating in a Maxwellian non-conductor of class 1 in the time

interval [O,t ) is given by

(5.1) a(t) a(o) 0 t < t
1- a(o) jt 8 e-(T)dT 0

dUt

here is defined by (4.30), *(t) = -1/2 fa T and a l

where Ut (the intrinsic velocity) satisfies (4.32) and a is deiined

by (4.29).

Now rewrite (5.1) in the form



-23-

(5.2) act) e- * (t)

aO = 1 + a(o)I(t)

where

(5.3) I(t) 1 ft e= ( T.
11 0 ~ TPC

In the general case we can say very little about the growth be-

havior of the amplitude a(t). If, however, the Maxwellian Non-

Conductor i~s such as to satisfy (4.26) then (4.30) clearly reduces

to 8t (a F A t  (A) t Ut

and if we set 'r = - 1/2 t = F (a) t / 2(AC) t Ut . (5.3) becomes
tt t

(5.4) I(t) = ft n e -*(T )dT
o T

Clearly 1(0) = 0. Moreover, sgn I(t) = sgn (aFAr)t (, and 1(t)

is strictly monotone for 0 : t < to, provided (a A ) t 0, 0 5 t < to;
0F t o

this last statement follows from the continuity of DFA, which

guarantees that 0 F A ) is of fixed sign for 0 5 t < to if

(FA)t # 0 on [0,t). Finally we assume that the material

and the process just ahead of the wave are well-behaved in the sense
that (a xF)+(t), (F+)(t), (a xn)+(t), (A+)(t), (a FA E)t, aXA ) t

(SxA )t , (arA )t, (B E (FB~)t, (dFC )t , OFDF,)t , (a)D )t ,

(aX )t , (E ts (F )t , and (aF J t all

(4) Since we are assuming that Ut ;* 0, 0 s t < to, we also must

have (A ) > 0, 0 s t < to.
t 0
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have finite limits as t-t ; then, not only are both (t) and I(t)

continuous for 0 t < to, but they have finite limits *(t ) and
0 0

I(t ), respectively, as t-to.00

Remark 5.1 When (4.26) is satisfied, our governing equation for

the amplitude a(t) is

(5.5) da - 7t a + = 0
T t

The most important consideration here is the form of the co-

efficient 7r If we call (A ) the instantaneous tangent modulus

at the wave and (AE)t the instantaneous second-order modulus at

the wave, then this coefficient has precisely the same form as that

of its counterparts in the Bernoulli equations arising, for ex-

ample, in the studies [21, [5] and [61. A broad analysis of the

local and global behavior of acceleration waves whose amplitudes

obey Bernoulli's equations of the form (5.5), in which nt, the

coefficient of the term a 2(t), has the form

C5.6) t Et/2EtUt

(with Et and Et being, respectively, the appropriately defined

tangent and second-order tangent moduli, at the wave, for the

particular material under consideration) has been carried out

by Bailey & Chen in [7] and [8]. In all instances where Bernoulli

equations of this form appear, in studies on the growth behavior

of waves propagating in non-linear materials, the intrinsic velocity

Ut satisfies the relation
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(.7) u E t
t t PR

where P ( = Y(t) I The usual assumptions which are then

t i
made are that U t > 0, pR > 0, and Et  0 (the constitutive assump-

tions, in all cases, guarantee that Et is a continuous function
,.

of t); these, in turn, lead to the conclusion that sgn I(t) = sgn Ft

and all subsequent analysis, of the qualitative behavior of the

amplitude, a(t), is based on this fact and the continuity of I(t).

Following Coleman, Greenberg, and Gurtin [5] we set

(5.8) (t ) -1/I(t )
0 0

Then we have the direct analogue of Remarks 3.4,3.5, and 3.6 of [5]

which we state without proof as

Theorem 5.2 Consider a Maxwellian Non-Conductor of Class 1 in which

(4.26) is satisfied for every t c M. Let C be any process in M and

an acceleration wave, relative to E, which is propagating into

the body in the time interval [O,t ). Then i) If either

la(0)l < MX(to)I or sgn a(O) = sgn (aFA )t, then a(t) remains bound-

ed throughout the closed interval [0,t 0 1. (ii) If

sgn a(0) - sgn (FA)t and Ia(0)I > MX(to)I , then there exists

a finite time t , (O,t ) such that lim Ja(t)I = c (this contradicts

our assumption that Z is an acceleration wave relative to E through-
out (O,to)). (iii) If sgn a(0) - sgn (.A)t and Ja(O)I MX(t )I

then a(t) is continuous for 0d t et o, but la(t)l- as t-tO.
0 0
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Now consider an acceleration wave which is propagating, in
the time interval [O,t ), into a homogeneous rest region of a Max-

0

wellian Non-Conductor of class 1; the governing equation for the

amplitude is, in this case, (4.43) where a and 0 are constants
0 0

which are defined, respectively, by (4.41) and (4.42). We

rewrite this equation in the form

da +(5.9) d-+a a + a 0

where = -1/2 a 0 and -1/ 2 6 0 . Then as a direct analogue of

Theorem 5.1 of Coleman, Greenberg, and Gurtin [5] we have

Theorem 5.3 Consider an acceleration wave I which is pro-

pagating into a homogeneous rest region of a Maxwellian Non-Conductor

of class 1 in the time interval [0,t ). Then, if a and 0 , as

defined by (4.41) and (4.42), respectively, are non-zero, the ampli-

tude satisfies

(5.10) a(t) : ' 0 5 t < t(a-- - l)et + 1

where

(5.11) K - a

oo o0 FUo

.2Po  
0  F 0 2A 0  F 0 r

-UE(+ (a cf) o

!..
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Remark 5.2 The expression (5.10) above is valid only under the

assumption that both a $0 and 0 $0. If we assume that 0 $0

but that (aF C ) 0 and B =0 or (; F F) 0 then the formula for

the amplitude takes the form

(5.12) a(t) 2a(O) 0 ! t < t2 - $oa(O)t 0

and it is clear that ja(td- , whenever sgn 0o = sgn a(O), as

t-t = 2/0 a(O) provided, of course, that 0 < 2/0 a(O) < tQ. If

either sgn a - sgn a(0) or sgn 8 sgn aCO) but 2/-a(0) ? t
0 0 0 C

* a~t) is continuous for all t E [0,t )
0

Finally, if we define constants V 0and W 0by

000 0def o o U2(5.131) Vo  E B)o - B HU

(5.132) Wo B ef oD o o U2 (5
2 So (FD o - rA ) E B o

then we may rewrite K in the form

(5.14) K = U V /WO0 0o

Following, once again, Coleman, Greenberg, and Gurtin [3], let us

agree to call the wave weak if Ia(0)I < JXI and strong if ta(0)t>IX{,

where = (t ). Then the assumptions

00

(5.15) V < 0, W g 0, U > 0, p > 0
0 0 0 0

imply that a(t) - 0, monotonically, as t when the wave is w-ak or

when sgn a(0) = sgn W0. If the wave is strong and sgn a(O) = -sgn W0

then ja(t)J m ' monotonically in finite time.

(5) W= - (aFA )oE if the material satisfies the condition

expressed by (4.26)
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Appendix:

Simple Non-Conductors as Maxwellian Non-Conductors of Class 1

We sketch here an outline of the proof that every simple non-

conductor exhibiting fading memory in the sense of Coleman [11 may

be viewed as a Maxwellian non-conductor of class 1 provided certaiTL

smoothness asumptions, analogous to those employed in [5],

are imposed on the response of the material.

Let Ft and et denote the histories up to time t of the de-

formation gradient and the temperature respectively, at a fixed

material point X; these are real-valued functions defined by

(A.1) Ft(s) = F(t-s) = Dx(X,t-s); 0 5 s <

(A.2) et (s) = e(t-s) = O(X,t-s); 0 s <

Then the constitutive equations of a simple non-conductor are

(A. 3) T(t) = I(F t ,'1 t )

^ t t
(A.34) T(t) = e(F ,n )

(A.4) 6(t) = 0(Ft nt)

(A.5) E;(t) = A:(t tn

A Ft t
(A.6) q(t) q( ,rT ,g) = 0,

where g(t) = ax(X,t) is the temperature gradient. We assume that

the material is homogeneous and that a homogeneous reference con-
A

figuration has been chosen so that the response functionals 1,6,
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A

and c, are independent of X. Let h be a fixed influence function,

i.e., a positive monotone decreasing,functionin C [0,-) decaying

fast enough to zero so as to be square integrable. Let At = (Ftr

be a pair of histories and define the norm 11At 1i of A to be

(A.7) IlAtIl = Iltllhr + l t1lIlh + IFt(o)l + Int(o)l

where Fr and r denote the restrictions of Ft and n to the interval

(0,-) and where

(A. 8) llfl12 =  oolf(s) Jh(s )2ds

A
We assume that there exists an influence function h such that 1,0,

and , have for their common domain of definition an open subset

D of the function space composed of those function pairs

At = (F t t ) whose norm HlAtll is finite. In addition, we as-
A A 1 fsume that 1,6, and C, are C functions over D w.r.t. 1t i.e.

A A t
if f denotes either 1,0, or C, then f has at each A eD a first

order Frechet derivative 6 f(AI.) which is a continuous linear func-

tional over O and has the property that for all functions fl in

4-ith At + Q in D

(A.9) f(At + fl) = f(At) + 6 f(Atil) + 0(1101102)

Now, in terms of the past histories, the constitutive equations

A.3 - A.5 may be written in the form

t t(A.1IO) T(t) = (F ,nr;F,n)

I-
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A t t(A. II) 8 O (F r~nr,;n)

^.Ft 1t "
A. 12) E £ rnr, ;,n)

A A

where F F(t) and n = n(t). If f stands for either i,e, or E,

in A.10 - A.12, then the smoothness assumption (A.9) (fading memory)

implies the existence of differential operators DF,Dn,6F,6 which

operate on f to yield functionals DFf'Dnf'6 Ffn f as follows:

Let At = (F tt )eD and gcHh where Hh is the Hilbert space of all

real-valued functions on [0,-) satisfying H IgIl < ®. Then,

t t a t
(A.13) D f(F - f(Ft;,n;Fn)

fl T r r
D f(Ft ;nt ;F;n)(A.14) Dnf(Ft ;nr

(A.15) 6Ff(Ft ;ntg) = -f(F + ,n r
fFt ;3V r.

(A.16) a t g) = f(Fr ,;r + vg;F;n)iVj O

where the partial Frechet derivatives 6 Ff and 6 f are jointly con-

tinuous in all their arguments including g, and are linear in g.

By the Reisz representation theorem this implies, in particular,

for f 1, the existence of functions Kt and Lt in Hh satisfying

(A.17) 6Ff(F t nt g) = ds

( , g) = g(s) tsh(s)2ds

n 0t



-31-

A A
Now let Kt and Lt be the unique solutions, respectively, of the!t
systems

d A A 2 ^At

(A.19) dK t(s) = K t(s)h(s) ;K t(0) = D FI(Ft t)

d A A 2 A tt

(A.20) - Lt(s) = Lt (s)h(s) ;Lt(0) = D I(Ftn)ds t n

A A t t
Clearly Kt and Lt will depend on the histories F and n ,i.e. we

may write

A t t
(A.21) Kt (s) : K(F ;n ;s)

A
(A.22) L t(s) L(Ft;nt;s)

A A
The functions Kt and Lt are called, respectively, the stress-

strain and stress-entropy relaxation functions for the material.

We assume that the following smoothness assumptions are satisfied:

For each fixed s, K(*,',s) and L(',.,s) are continuous functionals
n t t  t

over D. For each fixed pair (Ft, )eD, KI(Ft;n ;s) and L'(Ft;n;s)

are differentiable functions of s,i.e., for 0!5s<-

as

( A. 24) L" (F t;nt;s) = as L'(Ft;nt;s)
as

exist and, moreover, satisfy
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(A.25) K"(Ft n ;•)h(") 2£H h

(A. 26) L"(Ft ;nt  )2

Finally, we assume that for each pair (Ft ;nt)eD

(A.27) K'(Ft ;,nt ;.)h() 2 Hh

(A. 28) L' (F t ;Tjt ;-")h(-) 2CH h

Clearly, we may rewrite (A.17) and (A.18) in the forms

(A.29) 6  (Ft ;ntlg) = fcg(s)K'(Ft;nt;s)dsF 0
(A.30) a 1(F ;ri Ig) = fg(s)Lt(Ft ;rn;s)ds

1*)0

AIn a similar fashion, if we take f=e, we find that

A t 00 tt(A. 31) 6Fe(Ft;,n g) = f0 g(s)M'(Ft;n ;s)ds

A tt
(A. 32) 6 e(Ft;ntlg) = jOg(s)N'(Ft;n ;s)ds

A A t t
where Mt (S) = M(Ft;nt;s) and Nt(s) = N(F ; ;s) are, respectively,

the energy-strain and energy-entropy relaxation functions for the

^ A t tt tmaterial; they satisfy M(Ft ;t 0) = D (F ;it), N(F ;n ;0)

A t t
- D n(F ;n ) as well as all the smoothness conditions laid down

for (Ft;nt;s) and L(F t;nt ;s). Finally

A

(A.33) 6 (Ft ;ltg) J0g(s)P(Ftt ;s)ds

F 0.
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(A. 34) 6 0(FttIg) fg(s)R'(Ft;uT ;s)dsin  0

A A t
where P t(s) = P(Ft;nt;s) and Rt(s) = R(F ;n ;s) are, respectively,

the temperature-strain and temperature-entropy relaxation functions,
Att t% t t

and P(F ;n ;0) =D Fe(Ft; ), A(Ft;nt;O) = D 8(Ft;n ) and once again,

the smoothness conditions laid down for K(F t;n t;s) and L(F t;n t;s)

are assumed to be satisfied by P(F t;nt ;s) and R(F t;n t;s).

Now, our smoothness assumption (A.9), where f stands for either
A A

I,e0, or e allows us to differentiate each of these functionals w.r.t.

time so as to obtain

(A.35) D = F(Ft t)F + Dn I(Ft-n

+ 6 UP Ft;n tIF t) + 6 (F t;TntI~t)
Ir )

K(F t ;nt ;o)f + L(Ft ;n t ;0);

+ f fK(F ;n~ S)F(s) + LI(F ;nt;s)Tt(s)}ds
0 rr

SM(Ft;ntI;0)6 + N(Ft;nt;r))

F' r r

A t t t

(A.37) 0 DFe(Ft;nt)F + D e(Ftnt)0
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I +

+ A t t Att.
+ F (Ft;l ifr) + 6n r(F~ it

t t t tP(Ft ;n ;O)F + R(F ;n ;O);

+f{P'(Ft n ts)ft(s) + R'(Ft ;ri;s);t(s)}ds,

where each of the above results is clearly valid only at those

points (X,t) where both F and n exist. Now let Vx(Ft;nt;s) stand

for any one of the relaxation functions introduced. We shall assume

that the reference configuration R has been chosen so that each ofR+1

the following maps from R x D R are of class C w.r.t. the norm

! II'~ (continuously Frechet differentiable):

tt

(A. 38) (X;F t;n t )  V (Ftt t0)

) t t

ii(A. 39) (X;F ;n )  1(Ft;n ;0)

Finally we assume that D is sufficiently large enough to ensure

there exists a non-empty open subset of R+ x such that, for

any fixed (Ft; lt)D,A(cD whenever A I where

A. (41) A(s) =A s=0
(F (s);nr(s)) ; s>O

In particular, this is satisfied if we choose A=(F t(0),n t(0)). We
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QA

shall now exhibit a class M of pairs (x,n) where X is a motion

of R and n and entropy density function, which is such that the

simple non-conductor defined by (A.3) - (A.6) and satisfying the

smoothness conditions above, is a Maxwellian Non-Conductor of
A

class 1 relative to M. We require, explicity, that each (Xr)EM

satisfy the following conditions; (i) X contains, at most, an

acceleration wave of order 2 (ii) n is continuous jointly in X and

t while rin ;, and aX2n have, at most, jump discontinuities

across I but are continuous in X and t jointly everywhere else.

(iii) {Ft(X,.),n t (X, )}D for each X E R and for all (X,t),{F(X,t),
n(X,t)lei (iv) the maps, (X,t) ) F t(X,-), and (X,t) t (x,-),

1 r r
from Rx(-o,t) Hh are C1  (continuously Frechet differentiable).

The last hypothesis implies the existence in Hh of the deri-

vatives Ft (X,-) and ;t(X, o) of, respectively, the maps t - Ft(X,.)
r r r

and t -+ T) (X, ) from (-o,t ) into H Thus both Ft and n arer 0 h* r r

absolutely continuous and the following relations hold for almost

all s in (O,a):

*(A. 42) f§t(X,s) =-a Ft(X,s)

(A.43) rA (Xs) =-9 rj (X's)
r sr

Thus we may rewrite (2.35), (2.36), and (2.37) in the forms

(A.44) T WO 0)f + L(Ft ; fI(F 5tnsb F(b)

+ L(F t ;;t b)9 n t(b)}db
b r
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t t ) + x(tn t 0) f'f(totb3t(b(A.45) M(F ,n , O)F + 1(F ,nO)n - !M(Ffl,b)rbFr(b)

+ N'(Ft ,tb)abr(b)}db

(A. 46) 0 = p(FtO,,)F + R(F ,nt,0); - f{P'(Ft ntb)a Ft(b)

R' (Ft nt,b) 3n t(b) }db,

which are valid at all points (X,t) away from the wave [. Employing

integration by parts, in each of the integrals above, we find that

the constitutive equations (A.44) - (A.46) may be written in the forms

(1.2 1) - (1.2 ) where the functions ABI are defined

as follows:

(A.47) AT  K(Ft;n t ;O)

B = L(Ft nt;O)

C = K'(Ft ;n t;O)F + L'(Ft;nt;O)n

+ fOo{K",(Ft;it;b)Ft(b) + L"(Ft ;nt ;b)nt(b) db
0 r ' r

(A. 48) C M(Ft;nt ;0)

E = N(F t;n t;0)

F = M'(Ft ;ft;)F + NI(Ft;n t;Q)n

+ f,{MI'(Ft;n t ;b)F t (b) + N"(Ft ; t;b)nt(b)}db
o r r

t t
(A.49) G F P(F t I ;O)

HE= RF;) ;0)

I = P'(Ft;nt;O)F + Rt(Ft;nt;O)n
,, ; tbF t rtb}d

+ JP(F t n ) t(b) + R"(F ;TI ;b)Ti (b)}db

0 r

*1 ,e
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By our smoothness assumptions on the response of the simple non-

conductor, and our hypothesis concerning the class M, each of the

functions A,B, IC above is clearly of class C1 in the argumerils

F,n,X, and t.
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